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GENERAL SPATIAL STATIC CONTACT PROBLEM FOR A PRESTRESSED ELASTIC HALF-SPACE™

S.YU. BABICH and A.N. GU2Z

The general spatial static contact problem for an elastic half-space with
initial stresses is considered. Exact solutions are constructed for an
arbitrary structure of the elastic potential, which are twice continuously
differentiable functions of components of Green's strain tensor. The
investigation is carried out in general form for compressible and
incompressible bodies.

Questions associated with contact problems for bodies with initial
stresses were examined in /1-4/ for particular forms of the elastic
potential. Problems on the vibration of a rigid stamp on the surface
of an initially stressed half-space and cylinder were examined from the
aspect of the linearized theory of elastic wave propagation /7/ in /5, &/.
Contact problems for bodies with initial stresses were investigated
within the framework of the linearized theory /7/ in /8, 9/ for an
arbitrary structure of the elastic potential in general form for the
theory of large ({(finite) initial strains and different modifications of
the theory of small initial deformations. A formulation is given in
/8, 9/ for contact problems for elastic bodies with initial stresses and
torsion contact problems are examined. A number of contact problems
for an elastic half-plane with initial stresses is examined in /10-12/
by using complex potentials of plane static linearized problems /13, 14/.
Investigations are performed in general form for compressible and incom-
pressible bodies. Complex potentials are introduced /15—18/ for plane
dynamic problems and the plane dynamic contact problem for a prestressed
half-plane is solved on their basis /15, 20/, when the initial problem
allows transformation to a stationary problem in a moving coordinate
system. The complex potentials introduced in the absence of initial
stresses reduce to the complex S.G. Lekhnitskii potentials /21/ for an
orthotropic linear elastic body in the case of unegual roots of the
governing equation, and intc the complex Kelosov-Muskhelishvili potentials
for an isotropic linear elastic body in the case of egual roots.

1. Fundamental relationships. we consider an infinite elastic isotropic or
transversally-isotropic body with a homogenecus initial state of stress and strain governed by
the expression

Syt = 8, %0, Sy =0 (1.1)

We introduce a Cartesian coordinate system y,,y,. y; and an arbitrary cylindrical coordi-
nate system with axis Oy, in the initial state of strain by letting N and S denote the normal
and tangent to the cylindrical surface. BAs in /23/, we introduce new variables 2y = 0y,
for the cylindrical cocrdinate system. For the cases examined in /23/, it is rroved that
Imu; =0 and Ren, >0

We consider two cases of the representation of soclutions of spatial static rroblems for
elastic bodies with initial stresses.

Egual roots. In the arbitrary cylindrical cocrdinate system we represent the displacements
in the form {(see (5.4) in /23,

8 a2 a
un=gyr - @)= agyar e o (1-2)
a & o
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For the stress vector terms whose compcnents are referred tc the body dimensions in the
initial state of strain, we have for ¥, = const /23/
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Uneguai roots. In the arbitrary cylindrical coordinate system we write the displacements
in the form (see (4.7) in /23/}
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We have for the stress vecteor components for y, = const {(z; = const) /23/
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The functions ¢; (i = 1.2.3) in (1.2)—(1.5) are defined by expressions presented in /Z3/.
The guantities cg. n, m,. L (i=1,2) are defined in terms of the elastic potential and the initial
state of stress and strain, respectively, for compressible and incompressible bodies by
expressions presented in I3/
2. Contact problem for an arbitrary contact domain. We will examine the
fundamental results ¢f an investigation for & prestregsed elastic half—space (g, << () ublected

determined by the function u (y,. y,). We letr §*

without fricticon to a stamp whise shepe 1
: g {y;, ¥;) the normal pressure intensity acting out-

denote the contact domain for y, = (. e
side the contact domain.

The boundary conditicns ¢

Hy o= o Ly ) Qan® o= 0 Uge* =0, Yy = s
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where o, = const and are determined from the stamp equilib-

£ U?

yy = Ufz = ) have the forn

th
ot
«
m
3
Ead
S ¢
ty
E %
* 0
i
it
8]
53

Here U = Uy = %y ™ Qoffy — Foe
riwn conditions

Pg::: Spdﬁ*, _\[‘.‘,—_—;‘\;\s‘g"})d‘\’*, =1 2. p:x—-—«oas"‘;;,::a

[#]

We perfornm the :’,nves or compressible and ircempressible bodies

for an arbitrary struc
As in /Z3/, we in

gy =4 —m W oy ) ==~ Y Ay e B0 (2.2

T.
s for egual roots (i = 1) by the relationships

Y
i
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The function f =f (4. . 2;) 1s a solution of the equation

#f __'ﬁ {2.4)
ot Wz‘ + 0z? 0

For unequal roots (n,5= n,) of the governing egquation, we introduce potentials by the
following relationships /23/:

Hyw ¥ 21y Qr=—x VM f(yn sy Z2)y Ga=0 {2.5)

fr==

1‘1"“1

Taking account of (2.5), we have from (1.4) and (1.5) (see (4.17) from /23/)

my

s = T—=m o5 f(ylv Yn 21)— 1+ :nz azp f(y“ Yo Z2) (2.8)
Qss* = cua [] "‘I"a_:ﬁf(y" Yo 21)— Vnal el AUUNZ ~2)]
Q5 = ¢us %[-o%f(yn Yo 1) —-;;/'(yu 28 22)] v L=N, 8

where the function f is a sclution of cone of the equations

i TR SR i & (2.7
Tof T o a7 =0, j=1,2

We examine the relationships (2.2)=(2.7) for y; = 0. In this case in place of (2.4) and
(2.7), we can write one egquation to determine the function £

2 A 52
(JD~’ + = = 1 (Y10 Yoo ya) =0 (2.8)
vH1 7

Olg” ()

Substituting (2.3) and (2.6) intc (2.1), we obtain the following boundary conditions for
the potential F for y, = 0:

if_ — 3 AN
A v = ulyss w2 Y p) =98 (2.9)

‘(,%;Je‘z"‘q(yr u)e Youp yo) =S5

Here
4 = r_lfgnu'"l”g . B=cy(li—1) (case (2.3) (2.10)
Vol —m) (e niy)
my, — my . e T St 2.5

.4=m~ B=c¢y '} mily 1 n:d: { case | {)}) (2.11)

We introduce a new harmonic potential
Adf dy, =V (2.12)
Then for y, = we obtain boundary conditions for the harmonic poterntial V from (2.9)
and (2.12)
V=—u{ y;. v Yy yo) = S* (2.13)
r
au3

0

== Q(!J:s y2) ¥ {yu yo) = S*

It follows from {2.13) and (1.2}, say /24/, that the mixed problem for the potential
{2.13) to which the contact problem reduces in the case of an elastic half-space with initial
stresses, agrees in structure with the mixed problem to which the contact problem reduces for
2 half-space without initial stresses if we make the substitution (&, p are Lamd constants)

5~ ey (2.14)

Therefore, the contact problem for an elastic half-space with initial stresses can be
considered sclved in the case when the contact problem of classical linear elasticity theory
is solved for the corresponding contact domain. Irn this connection, known potentials (/24—27/,
etc.) can be utilized for the contact problems of classical elasticity theory in the case of
a half-space. Taking into account the substitution (2.14) and the representations of the
solutions (2.3) and (2.€), the state of stress and strain of a half-space with initial stresses
can be determined. If we are interested just in the pressure under the stamp P == —Qg,* Jy=0
and the displacement of the half-space u, lyy=0. then several general assertions can be proved.

The expressions B

us=V{n yo ¥3) Vi p) &% P=—7—3—~ (v v ys) Vg p)= 5* {2.15)
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follow from (2.3), (2.6), (2.10)=(2.12) for y;, = 0.

In the case when forces are not applied outside the stamp, i.e., ¢y, y) =0, it follows
from (2.13)-(2.15) that the pressure distribution under the stamp for an elastic half-space
with initial stresses differs from the corresponding distribution in classical elasticity theory
by a factor dependent on the initial stress

B a4z
Ke= _fT 2k 1
A p () (2.16}

Analogous assertions are obtained in /10, 11/ for an elastic half-plane with initial
stresses.

The result formulated above affords the possibility of determining the distribution of
the state of stress just under the stamp by means of the known solution for an elastic half-
space without initial stresses in the case of an arbitrary contact domain. The problem of
determining the state of stress and strain in the whole half-space reduces to seeking the
harmonic functions f (y, ¥, ¥s) when it is further substituted into the expressions for the
displacements and stresses. The results obtained above were published partially in /28/.

3. The axisymmetric contact problem. Aas an example of the reduction cof the
mixed problem with initial stresses to the classical mixed problem of potential theory, we
consider the axisymmetric contact problem for a prestressed half-space. We limit ourselves
here to the case of multiple roots (n; = n,) of the governing equation. This case holds, for
instance, for compressible bodies with an harmonic~type potential and for incompressible
bodies with a Bartenev-kKhazanovich potential /23/. 1In the axisymmetric case under consider-

ationwe have from (1.2}, (2 and (Z.2) for determining the displacement in terms of the
harmonic functicrn = f(r.z;) in & circular cylindrical r, 8.y, coordinate system
A Mg e Wiy af . wy., O L
T T e my (VD) or (4 = me)in ar oy (3.3
o,
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From (2.3) we derive expressions for the stress veczor cempenents for gy, = const (5 = const)
in the form
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Let a stamp bounded by a surface ¢f reve:ution be impressed in an elastic prestressed
half-space : (0. It is assumed that there zre nc friction forces between the stamp and the
half-space and that a giver external load P; directed along the axis cf symmetry acts on the
stamp.

The boundary cenditicne of the problem have the fellewing form for yy; = 0

(o8]
tak

u r, ) = —q (r), Yupr(r.0) =0, Ur<a
Qaa* (1. 0) = 0. Qu*(r. ) =0, 1>a
where ¢ (r) = o () — & (4. (r) ig the function Getermining the shape of the stamp, a, 1is the
translaticral displacenernt of the stamp, and & is the radius of the contact area;.
For y, = 0 {y,= 2, = 0), taking account of (3.1} and (3.2}, we obtain the boundary con-
ditions
o1 qin 1t 2y oy
e e e A= - tlr<a
ovs A CTmarmvn | STS
oy =0, r>a
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to determine the function [ =f(r. y,) that is a sclution of the equation

il 1 6f o .
st Tt = (3.5)

The mixed probler for & harmenic potential (3.4), {3.5%) to which the contact problem for
an elastic half-space with initial stresses reduces is in complete agreement with the correspond-
ing problem in the case of nc initial stresses /297 if the fellowing substitution is introduced

A= hx2
Lo il 4
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Following /29, 30/ we obtain from (3.4} that the state of stress and strain in a half-
space is characterized by the following functions:

1o yo)= " p7C (0} Jo (po) exp( — £ ys)dp (3.6)

Sy R

1

v —yyiedy { o (va) prsin (pz) s}
o

(Cpy=Cilpla), r=1ap, p=uas, 0 p<< )

Taking into account that here 2 = y/Vn, i=1,2, on the basis of (3.1), (3.2) and
(3.6) we can determine the stress and displacement distributions in the half-space. ‘

Although the mixed problem for the potential to which the contact problem rgduces in the
case of an elastic half-space with initial stresses (under the substitution mentioned) agrees
with the corresponding mixed problem for a half-space without initial stressesf all the states
of stress and strain will be different in the half-space for the problems mentioned. The
latter is associated with the fact that for these problems the displacments and stresses are
represented in terms of harminic functions of their arguments in a different manner.

g 1]

1
Cipy=— .:..4_ {cos () S (I —p*) e ly)dy +
b

4, Example. We determine the influence of the initial stresses on the pressure dis-
tribution under the stamp that acts on a prestressed elastic half-space. Denoting the pressure
under the stamp by P.P%, respectively, for the prestressed half-space and in the case 9f no
initial stresses, we have P = P'h according to the assertion in Sect.2, where K is defined
by (2.186). ' ‘

In the case of an incompressible body with Bartenev-Khazanovich potential, we have for
the constants /23/

o == 20070 (0 o 4 Gy = a2
=i omy=d e, (1 — i3

Comyp o ony = B3 my = 7R (4.1}

For an incompressible body 4~ x. consequently, taking account of {2.16) and (4.1), we
cbtain ek (4.2)
AN

For an incompressible body with Treloar potential, the constants have the form

5

N N L R N TR N 4.3
mg= 4, 5 =2251 08 =104 Al

For an incompressible body with Treloar pctential we should set p = 2¢,, 7+--x hence, we
obtain from (Z.16) and {(4.3)

1

 MEE RS = 30—
- AT )

We present below, for certain values of ,, the corresponding values of X for a body with
Treloar potential and (in the parentheses) for a body with Bartenev-Khazanovich potential

9 0,67 (0,69) 0,8 1 1,5 2
K 0O .75 (0.35) 1¢1) 1.33(1,12) 2,08 (1,02)

I (4.9

It is seen that the influence of the initial stresses on the pressure distribution under
the stamp is sufficiently substantial in the case of incompressible bodies.

For a* = 067 (6% {this corresponds to a surface instability of the half-space!, we
cbtain A =0 from (4.2} and (4.4}, i.e., the pressure under the stamp is zero. An analogous
phencmenon was detected for the torsion contact problems /8/ and the plane problems /10, 11/.
From the physical viewpoint it is natural that an achieving the initial state of values that
correspond to the surface instability, it is almost not necessary to apply forces for small
stamp displacements (within the framework of the linearized theory).

REFERENCES

1. FILIPPOVA L.M., Plane contact problem for a prestressed elastic body, Izv. Akad. Nauk SSSR,
Mekhan. Tverd. Tela, No.3, 1973.

2. PILIPPOVA L.M., Spatial contact problem for a prestressed elastic body, PMM, 42, No.&, 1978.

3. DHALIWAL R.5., RANJIT S. and SINGH B.M., The axisymmetric Boussinesq problem of an initially
stressed neo-Hookean half-space for a punch of arbitrary profile, Interrn. J. Engng Sci.,
Vol.1l6, No.6, 1978,

4. DHALIWAL R.S$., RANJIT S., ROKNE J.G. and SINGH B.M., Axisymmetric contact and crack problems
for aninitially stressed neo~Hookean elastic layer. Intern. J. Engng Sci., Vol.18, No.1, 1880.

5. KALINCHUK V.V. and POLIAKOVA I.B., On the excitation of a prestressed cylindex, PMM Vol.45, No.2, 1981

6. KALINCHUK V.V. and POLIAKOVA I.B., On stamp vibrations on a prestressed half-space surface,
Prikl. Mekhan., Vol.18, Ro.6, 1982,

7. GUZ A.N,, Stability of Elastic Bodies under Finite Deformations. Naukova Dumka, Kiev, 1973,



342

8. GUZ A.N., On contact problems for elastic compressible bodies with initial stresses, Dokl.
Akad. Nauk Ukr. S8R, Ser. A, No.&, 1980.

9. GUZ A.N., On the theory of contact problems for elastic incompressible bodies with initial
stresses, Dokl. Akad. Nauk Ukr$SR, Ser. A, No.7, 1980.

10. GUZ A.N., Contact prcblems of elasticity theory for a half-plane with initial stresses,
Prikl. Mekhan., Vol.l6, No.8, 1980.

11. GUZ A.N., On complex potentials of the plane linearized problem of elasticity theorv.
Prikl. Mekhan., Vol.1l6, No.9, 1980.

12. BABICH S.YU., On contact problems for a prestressed half-space taking friction forces
into account, Dokl., Akad. Nauk UkxSSR, Ser. A, No.l2, 1880.

13. GUZ A.N., Complex potentials of the plane linearized problem of elasticity theory {com-
pressible bodies), Prikl. Mekhan., Vol.1l6, No.6, 1980.

14, GUZ A.N., Complex potentials of the plane linearized problem for elasticity theory
(incompressible bodies), Prikl. Mekhan., Vol.1l6, No.6, 1980.

15. BABICH S.YU., and GUZ A.N., Complex potentials of the plane dynamic problem for compressible
elastic bodies with initial stresses, Prikl. Mekhan., Vol.l7, No.7, 1981.

16. BABICE S.YU. and GUZ A.N., Complex potentials of plane dynamic problems for elastic incom~
pressible bodies with initial stresses, Dokl. Akad. Nauwk Ukr.SSR, Ser. A., No.ll, 188l.

17. GUZ A.N. and BABICH 5.YU., On plane dynamic problems for elastic bodies with initial
stresses, Dokl. Akad. Nauk S$S8SR, Vel.261, No.2, 1981.

18. BABICH S.YU. and GUZ A.N., Plane dynamic problems for elastic incompressible bodies with
initial stresses, PMM Vol.4€, No.Z, 1982,

19, BABICH 5.YU. and GUZ A.N., Dynamic contact problems for a half-plane with initial stresses,
Bbstracts of Reports. Second Ail-Unicn Conf. "Mixed Problems of Mechanics of a Deformable
Body," Dnepropetrovsk Univ, Press, 1981.

20. BABICH S.YU., On dynamic contact problems for a half-plane with initial stresses, Prikl,
Mekhan., Vol.l18, No.Z, 1982,

21, LEKHNITSKII $.YG., Thecry cf Elasticity of an Anistropic Body. Nauka, Moscow, 1977.

22. MUSKHELISHVILI N.I., Certain Fundamental Problems of Mathematical Elasticity Theory,
Nauka, Moscow, 196€.

23. GUZ A.N., Theory of cracks in elastic bodies with initial stresses (spatial static problems).
Prikl. Mekhan., Vel.l7, No.&, 1981.

Z4. Development of the Theory of Contact Problems in the USSR, Nauka, Moscow, 1976.

2%, GALIN L.A., Contact Problems of Elasticity and Viscoelasticity Theory. Nauka, Moscow, 1980.

26. VOROVICH I.I., ALEKSANDROV V.M. and BABESHKO V.A., Non-classical Mixed Problems of Elast-
icity Theory. Nauka, Moscow, 1974.

27. UFLYAND YA.C., Integral Transforms in Elasticity Theory Problems, Izdat. Akad. Nauk SSSR,
Moscow-Leningrad, 19€:.

28. BARICH S.YU. and GUZ A.k., Spatial contact problems for an elastic half-space with initial

stresses, Dokl. Akad. Nauk UkySSR., Ser. A., No.3, 1981,
. BARDING J.W. and SNEDDON I.N., The elastic stresses produced by the indentation of the
plane surface cf a semi-infinite elastic scilid by & rigid punch. Proc. Cambridge Phil.
cc., Vel.4l, No.., 1945,

30. SNEDDON I.N., Fourier Transforms /Russian translation/, Izdat. Inostr. Lit., 185%Z.
Translated by M.D.F,

[}
S+

0021~8928~88 $10.00+0.00

PMM U.S5.S.R.,Vol.49,Nc.2,pp.342-348,1985
- a0 : . ' Pergamon Journals Ltd.

Printed in Great Britain

ON THE UNLOADING PROCESS FOR CONTACT INTERACTION™

V.,1. KUZ'MENKO

The unlozding process in & body under the action ¢f a stamp is investigated., It

is assumed that the unloading occurs at all points of the body. The contact area

between the body and the stamp car. change during the unloading; consequently,

the unloading problem during contact interaction is non-linear. Ageneralization

to the case of contact problems is proposed for the theoremof unloading /1/. A

variational principle is obtained in the unloading displacements, and the exist~

ence and uniqueness of the solution of the unloading problem are investigated .

The unloading process is examined in an elastic~plastichalf-space onwhicha

stamp of circular planform acts. The change in the contact area and in the contact

stresses during unloading is studied, and the shape of the residual impressionis

cbtained. The problem is investigatedby using the Galin sclution /2/ of the action

of a circular stamp and a load applied outside the stamp on an elastic half-space.

Numerical methods of solving contact problems with unloading are also examined;

an example is presented for the numerical sclution of the problemof plane defor~

mation in the compression of a strip by two stamps with subsequent unloading.
*prikl.Matem.Mekhan.,49,3,445—452,1985




